41. We neglect air resistance for the duration of the motion (between "launching" and "landing"), so $a = -g = -9.8 \text{ m/s}^2$ (we take downward to be the -y direction). We use the equations in Table 2-1 (with Δy replacing Δx) because this is a = constant motion.

(a) At the highest point the velocity of the ball vanishes. Taking $y_0 = 0$, we set v = 0 in $v^2 = v_0^2 - 2gy$, and solve for the initial velocity: $v_0 = \sqrt{2gy}$. Since y = 50 m we find $v_0 = 31$ m/s.

(b) It will be in the air from the time it leaves the ground until the time it returns to the ground (y = 0). Applying Eq. 2-15 to the entire motion (the rise and the fall, of total time t > 0) we have

$$y = v_0 t - \frac{1}{2} g t^2 \implies t = \frac{2v_0}{g}$$

which (using our result from part (a)) produces t = 6.4 s. It is possible to obtain this without using part (a)'s result; one can find the time just for the rise (from ground to highest point) from Eq. 2-16 and then double it.

(c) SI units are understood in the x and v graphs shown. In the interest of saving space, we do not show the graph of a, which is a horizontal line at -9.8 m/s^2 .

